If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2-16n-28=0
a = 2; b = -16; c = -28;
Δ = b2-4ac
Δ = -162-4·2·(-28)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{30}}{2*2}=\frac{16-4\sqrt{30}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{30}}{2*2}=\frac{16+4\sqrt{30}}{4} $
| x-5•8=72 | | -2(5+3y)=y=10 | | 7r2=14+8r | | 215=x | | 2x+11=6x-16 | | 5x-1/8-3x+1/2=-3x | | 3x+5=137 | | -9j-1=9j=5 | | (3x+3)+(4x-4)=180 | | x3+7x2-x-7=0 | | 2y–6y=-24 | | 2x-33/5x=11/2 | | 9+4t=-3(1=2t) | | 49=(x-115)/16 | | –8+2c=–6c | | z=(49-115)/16 | | 10q+15=5(2q+4)-5 | | (p-42)(p+2)=… | | 4m/4-3/4=9/8+4m/8 | | 3(8x+6)=90 | | -7(x+7)=-84 | | 8(x-8)=-112 | | z=(71-18.67)/8.01 | | 0.5(2y+9)=0.3(4y-6 | | o+10.5=18.32 | | 216^2x-1)=36^4x+3 | | 5x-7=-21 | | 10^x+6=38 | | a+2a–1=11 | | 2x+27+3x+23+90=180 | | 30x)=(x2+40)+(10x+35) | | 3^x^2=1 |